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J .  Phys. A: Math. Gen. 20 (1987) L1275-Ll280. Printed in the U K  

LE’ITER TO THE EDITOR 

Temperley’s triangular lattice compact cluster model: exact 
solution in terms of the q series 

M L Glasser, V Privman and N M SvrakiC 
School of Science, Clarkson University, Potsdam, N Y  13676, USA 

Received 22 September 1987 

Abstract. Temperley’s model of self-supporting stackings of circles in a triangular lattice 
array against a line wall is solved exactly in terms of q hypergeometric functions. For N 
circles, the number of different configurations is described by the large-N asymptotic law 
AA W. with A =0.312 3 6 . .  , and A = 1.735 6 6 . .  . . 

Recent interest in compact directed cluster models has been stimulated by the fact 
that some of them are exactly solvable in full detail including the explicit calculation 
of the generating functions. The only other class of cluster statistics models which 
have allowed global (beyond critical-point properties) solutions were various random 
walk models. In this letter we report a new exact solution for a model of ‘self-supporting’ 
stackings of circles at a line wall (Temperley 1952). In his paper, Temperley actually 
formulated several interesting cluster models of N-site lattice animals (connected 
clusters) near one or more walls. The first model can be defined as follows: N is 
partitioned in non-increasing combinations 

N = n , + n , +  . . .+  n, 1 S I S N  (1) 

( x , y ) = ( i - l , O ) , ( i - l ,  l ) , .  . . , ( i - l ,  ni-1). 

with ni d n i - ,  . Each group of ni sites is positioned at the square lattice points: 

Let cN denote the number of different animals of this sort (equal to the number of 
non-increasing partitions of integers), then the entropic free energy per site: 

sN = ( k T /  N )  In cN 

vanishes -1/JN, for large N. Further detailed results on the shape of such clusters 
are available (Temperley 1952, Derrida and Nadal 1984). Note also that sN - N-1’3 
in 3 ~ .  

Another model introduced by Temperley (1952) is obtained by removing the 
restriction ni d n i - l .  Thus ni can take any values consistent with (1). The solution of 
this model is straightforward (Forgacs and Privman 1986), specifically sN = kT In 2 is 
constant for large N. The generating function 

a) 

G(z)  = 1 c N z N  
N = l  

is given by 

Z 
G(z)=- 

1-22. (3) 
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Thus, with more configurations available, the animals have extensive total entropy. 
Recently studied compact lattice animal models (Bhat et al 1986, Privman and Forgacs 
1987, Forgacs and Privman 1987) allow for even larger freedom of lattice animal 
configurations, yielding sN = kT In A, with A > 2. Note that, for general lattice animal 
models, 

cN = AN-’A (4) 

for large N,  where A and A are lattice-dependent constants. However, the compact 
animal models discussed in this paragraph share with the simple random walks the 
property 6 = 0. 

Temperley (1952) actually considered the ‘one tooth’ restriction: the allowed 
configurations satisfy 

n ,  s n z s . .  . s nj 3 . .  . 3  n/-*  2 n, 

where 1 s j s I (while 1 < 1 S N as in (1)). This restriction again results in sN - l / J N .  
The third model reported by Temperley (1952) as joint work with Onsager is the 
solid-on-solid model of interfacial properties in 2D. It is outside the scope of our 
present work: the active field of solid-on-solid models has been reviewed, for example, 
by Fisher (1986). 

Finally, Temperley (1952) mentioned a triangular array packing problem (see details 
below), the ‘one tooth’ version of which was solved by Auluck (1951), following 
Temperley’s suggestion (with, again, sN - 1IdN). In this letter we study in detail the 
full version (no ‘one tooth’ restriction) of this model. Specifically, we calculate 
analytically the generating function defii ed as in (2). 

The definition of the model is illustrated by the open circles in figure 1 .  The base 
row of the cluster is continuous. The higher rows can have gaps. However, the cluster 
must be ‘self-supporting’: each y > 0 site must have both lower-y neighbours occupied. 
The neighbour sites are defined according to the connectivity of the triangular lattice 
with spacing equal to the circle diameter, with the x axis along one of the three principal 
triangular axes. In order to solve the model by the generating function technique, we 
extend the allowed configurations to include additional k - 1 base sites along the lattice 
direction forming 60” with the negative x axis. The case k = 4 is illustrated in figure 
1 .  The k - 1 = 3 full circles are part of the base. Together with the open circles they 
can ‘support’ additional sites (full circles in figure 1 ) .  

Figure 1. Compact self-supporting packing at the line wall (open circles). Full circles 
illustrate the three additional 60” base sites (see text) and the sites supported by the extended 
base. 
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The number of distinct N-site clusters with k - 1 60" root sites will be denoted by 
c ~ , ~ .  Obviously, 

C N . k  = 0 for N < k  

C N , N  = 1 .  

Let us emphasise that the number of sites forming the x axis part of the base is not 
fixed. All values consistent with the given k and N are allowed. 

We introduce the generating functions 
00 

N - k  
Fk( z )=  c c N . k z  . 

N = k  

Our objective is to calculate the k = 1 generating function since 

G ( z )  E z F , ( z ) .  

However, the extended set F k ( z )  is useful because these functions satisfy 

(5) 

Relations (5) essentially sum up the possible configurations of the 60" row above and 
to the right of the 60" base row with the origin site included (see figure 1 ) .  For example, 
the 1 in (5) corresponds to no second 60" row (the N = k animal). The zFl term 
corresponds to one site, at ( x , y ) = ( l ,  0), in the second 60" row, etc. Configurations 
of the more distant 60" rows are summed up in the appropriate F,. Except for the 
k = 1 'boundary condition' 

F , ( z )  = 1 + ZF1(Z) + z2F2(z) ( 6 )  

F k + l ( Z ) -  Fk(z )  = Z k + ' F k + 2 ( Z )  k s l  ( 7 )  

relations (5) can be replaced by their differences: 

which form a homogeneous set of equations. Recursions of the general type (7)  have 
been encountered in the theory of q series; see, for example, Adiga et a1 (1985, p 26). 
(In the present context the role of q is played by the variable z.) However, none of 
the particular forms there are suitable for our problem (see below). Thus, we devised 
the q series 

00 Z n ( n + k + l )  n 

+ k ( Z )  = 1+  q n =  n ( I - Z J )  (8) 
n = l  9 n  J S 1  

which satisfy the recursions 

d ' k + l ( Z )  - + k ( Z )  = Z k t 2 4 k + Z ( Z )  (9) 
and are regular at z = 0 for k 2 -2. Note that the general solution of (9) is of the form 
@ k ( Z )  = A ( z ) + k ( z ) + B ( z ) ~ k ( z ) .  However, one can show that the second linearly 
independent solution, &( z ) ,  is singular at z = 0. Specifically, for any solution with 

small z. Let us briefly summarise the results of Adiga er a1 (1985) in the form appropriate 
for (9). For a positive integer n, we define the solution @'(kn)(z) by @!, '!! l ( z )  = 1 and 
@?n!2(z) = 0. Several @(kn) with k < n + 1 and k > n + 2  can be calculated by using (9). 
For example, @!,")(z) = 1 ,  @(n!j (z )  = - z - ( " + ~ ) ,  etc. Ramanujan discovered a closed 

B ( z )  f 0 there exists K such that for all k 2 K, @ k ( Z ) / @ K  ( z )  = z -(A - K I ( k +  K + I  l / 2  for 
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form expression for 0.:"' for 0 s k s n 
Z m ( m + k + l )  

q n  - k - m +  I [ ( n - k + l I / Z ]  

q m q n - k - 2 m +  1 
@'(kn'= 1 

m=O 

with qO = 1. N o  closed form is available for k > n + 2. However, already the expression 
for 0r23 indicates that 0(kn) belong to the B(z )ZO class of solutions and thus have 
no direct bearing on the 'physical' problem (5)-(7). 

The regular solution 4 k ( z )  is sufficient to account for the boundary condition (6). 
Indeed, since (7) and (9) are homogeneous, we put 

( z = A( z)  4 k ( z ) 
and substitute in (6). The result is 

k a l  

A(z) = [ ( l  - Z ) ~ ] ( Z )  - z'&(z)]-'. 

Finally, the generating function for the original problem is represented as 

A simple ratio test for the defining series shows that & ( z )  are analytic inside the 
unit circle in the complex z plane. The form of the denominators, qn,  in (8) suggests 
that the function qbk(z) has a natural boundary at the unit circle. However, the 'physical' 
singularity of G ( z )  occurs at z, = A - '  < 1 and arises from the first (nearest to the origin) 
zero of the denominator of (10). It is, therefore, a simple isolated pole as in other 
solvable compact cluster models with extensive entropy: see (3) and  Privman and 
Forgacs (1987). As already mentioned the simple random walk models have similar 
singular behaviour. 

Thus, the generating functions for cluster statistics models can be simple rational 
functions or they can involve complicated mathematical objects, like f$k. In fact, the 
properties of such q series have not been investigated in detail in the mathematical 
literature. Fortunately, in our case the interesting behaviour arises in the region where 
&(z )  are analytic and in fact easily calculable since the series (8) converge extremely 
rapidly. Numerical evaluation of ( 10) confirms the general conclusions. The function 

is plotted in figure 2. It has a simple zero at 
z,= A - '  = 0.576 148 769 . .  . (12) 

followed by a sequence of poles-zeros (outside the range of figure 2 )  which seem to 
accumulate at z = 1-. However, the 'physical' circle of convergence, IzI < A - ' ,  is free 
of singularities (for G(z)) .  The function G ( z )  can be expanded in powers of z. We 
generated 60 terms by direct iteration of relations ( 5 ) :  
G ( z )  = z + z 2 + 2 z 3 +  3z4+ 5z5+9zh+ 1Sz' +26zx+4Szy+78z1" 

+135z~~+. . .+1264873498O5945z6 '+ . . . .  (13) 
The first ten terms shown in (13) were also reproduced by the direct expansion of the 
exact solution (10). Another consistency check is provided by using all the 60 terms 
to estimate 2,: consult Privman and Forgacs (1987) for the details of the numerical 
methods used in such analyses. The value (12) has been confirmed. Note that the 
effective coordination number' A = 1.735 6 6 . .  . is less than 2 for this model. The 

coefficient A in (4) is A = 0.312 3 6 . .  . . 
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Figure 2. Plot of z / G ( z )  as a function of z. The physically relevant region is OS z < z , ,  
with positive G ( z ) .  At z, = 0.576, the generating function G (  L) has a simple pole singularity. 

It is interesting to note the relation between & ( z )  with the q series occurring in 
the famous Rogers-Ramanujan identities, which play a role in Baxter's solution of the 
hard hexagon model (see Baxter 1982, 0 14.5). Let 

oc 

H ( x ,  z )  = z m 2 x m ( q m ) - ' .  
m=O 

Then + k ( Z )  = H(-zk+',  2 ) .  The Rogers-Ramanujan identities are 
CO 

[ ~ ( i ,  z ) ~ - l  = n (1 - z 5 m + 1 ) ( 1  - z 5 m + 4 )  

[ H ( ~ ,  z ) ] - ' =  n (1 - Z 5 m + 2 ) ( 1  - Z 5 m + 3  ). 

m = O  

3i 

m=O 

Possibly, &(  z )  possesses such an infinite product representation. 
Let us also point out that by the Pincherle theorem (see, e.g., Gautschi 1967), a 

continued fraction analogue of (1 1) can be obtained by standard methods. Specifically 

L 

1-  
z5 

1 -- 
1- . . .  

Finally, let us mention the q series: 
CO Z n ( 3 n + Z k + 3 ) / 2  

&(z) = 1 + c 
n = l  q', 
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satisfying 

(14) 

and regular at z = 0 for k 2 -3. Relation (14) arises in the fully directed square lattice 
compact animal model which has not been solved exactly (Bhat et al 1986, Privman 
and Forgacs 1987). However, the closed form for the second regular (for positive k )  
linearly independent solution for (14), needed to satisfy the boundary conditions 
appropriate for the fully directed animal problem, is extremely complicated. This issue 
will be taken up in a forthcoming publication. 

In summary, we have presented a new analytic solution of a compact-animal type 
model. The distinctive feature of the generating function for this case is the presence 
of q series which have a rich complex plane structure. However, the ‘physical’ 
singularity emerges via a simple mechanism of vanishing denominator in the domain 
of analyticity of the q series involved. For all the previously solved models with such 
a ‘simple pole’ critical behaviour, the generating functions were ratios of polynomials. 

k + 3  
( c l k + Z ( Z ! - 2 ( c l k + l ( Z ) + ~ k ( Z ) = Z  ( c l k + 3 ( z )  
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